Model-Based Reinforcement Learning for Infinite-Horizon Approximate Optimal Tracking

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based reinforcement learning for approximate optimal regulation

In deterministic systems, reinforcement learningbased online approximate optimal control methods typically require a restrictive persistence of excitation (PE) condition for convergence. This paper presents a concurrent learningbased solution to the online approximate optimal regulation problem that eliminates the need for PE. The development is based on the observation that given a model of th...

متن کامل

Efficient model-based reinforcement learning for approximate online optimal

In this paper the infinite horizon optimal regulation problem is solved online for a deterministic control-affine nonlinear dynamical system using the state following (StaF) kernel method to approximate the value function. Unlike traditional methods that aim to approximate a function over a large compact set, the StaF kernel method aims to approximate a function in a small neighborhood of a sta...

متن کامل

Model Based Reinforcement Learning with Final Time Horizon Optimization

We present one of the first algorithms on model based reinforcement learning and trajectory optimization with free final time horizon. Grounded on the optimal control theory and Dynamic Programming, we derive a set of backward differential equations that propagate the value function and provide the optimal control policy and the optimal time horizon. The resulting policy generalizes previous re...

متن کامل

Infinite Horizon Sparse Optimal Control

A class of infinite horizon optimal control problems involving Lp-type cost functionals with 0 < p ≤ 1 is discussed. The existence of optimal controls is studied for both the convex case with p = 1 and the nonconvex case with 0 < p < 1, and the sparsity structure of the optimal controls promoted by the Lp-type penalties is analyzed. A dynamic programming approach is proposed to numerically appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2017

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2015.2511658